434 research outputs found

    Preparation, characterization and in vitro evaluation of tablets containing microwave-assisted solid dispersions of apremilast.

    Full text link
    BACKGROUND: Solid dispersions are among the techniques successfully employed to enhance the dissolution of poorly water-soluble drugs. Microwave (MW)-assisted evaporative crystallization has been used to prepare solid dispersions of drugs and polymers. OBJECTIVES: The aim of the study was to investigate the solubility of apremilast (APM) in water by exploring the effect of MW-assisted solid dispersion technology. MATERIAL AND METHODS: In the present study, solid dispersions of APM, a poorly water-soluble drug, were prepared. The solid dispersions were prepared using the conventional method (CM) and the MW-based solvent evaporation technique. Microwave energy was used to enhance the solubility and dissolution rate of APM. The physical mixture and solid dispersions were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Apremilast tablets containing MW-assisted solid dispersions were prepared by the direct compression technique and compared with the marketed formulation (Aprezo tablets). RESULTS: The results obtained confirmed the conversion of crystalline APM to an amorphous form. The XRPD pattern of the MW-assisted formulation at a 2:1 ratio suggests the amorphous structure of APM within the formulation. Based on solubility studies results, Syloid® 244FP was selected as the best carrier. The dissolution study results suggested that the APM tablet prepared using MW-assisted solid dispersions at a 2:1 carrier/drug ratio improved the APM dissolution rate compared to the marketed formulation. CONCLUSIONS: Based on the results, it can be concluded that the MW-assisted solid dispersion technique may be an effective approach to enhancing the dissolution profile of other poorly water-soluble drugs

    Lessons learned from performance of students of Pharmacology in self coded surprise test with negative marking.

    Get PDF
    Introduction: The present study aims to find the effect of instruction of negative marking in a self-coded MCQ examination on the performance of students in the subject of Pharmacology with respect to the raw score, correct score and negative score. Material and methods: This longitudinal study was conducted in the Department of Pharmacology, Rural Medical College, Loni. The Second MBBS students were exposed to a self-coded MCQ test twice by surprise. The first test (T1) was given without instructions of negative marking, while during the second test (T2) instructions for negative marking were given. The parameters of the raw score, negative score, corrected score and number of students who did not attempt respective MCQs were calculated. The number of students passing with modified Minimum Passing Level was calculated was compared with conventional Minimum Passing Level. Results: Sixty-seven students participated in the study. There was a statistically significant decrease in the raw score in the T2, while the increase in the negative score when compared with T1. The number of non-attempted questions was increased in T2. There was a statistically significant difference in the number of students passed with respect to raw score in T1 and T2, while no such difference was seen with respect to Negative score and Corrected score. Conclusion: The Corrected score and Negative score are not affected by the minimum passing level, indicating a better parameter of scoring than the raw score. Hence, the use of Negative score or Corrected score should be encouraged than the use of conventional Raw score. Keywords: Minimum Passing Level, Negative Marking, MCQ, Corrected score, Pharmacology, Formative assessment, surprise test, self-coded test

    Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers.

    Get PDF
    PURPOSE: Triple-negative breast cancer (TNBC) is a heterogeneous disease with a significant challenge to effectively manage in the clinic worldwide. Immunotherapy may be beneficial to TNBC patients if responders can be effectively identified. Here we sought to elucidate the immune landscape of TNBCs by stratifying patients into immune-specific subtypes (immunotypes) to decipher the molecular and cellular presentations and signaling events of this heterogeneous disease and associating them with their clinical outcomes and potential treatment options. EXPERIMENTAL DESIGN: We profiled 730 immune genes in 88 retrospective Indian TNBC samples using the NanoString platform, established immunotypes using non-negative matrix factorization-based machine learning approach, and validated them using Western TNBCs (n=422; public datasets). Immunotype-specific gene signatures were associated with clinicopathological features, immune cell types, biological pathways, acute/chronic inflammatory responses, and immunogenic cell death processes. Responses to different immunotherapies associated with TNBC immunotypes were assessed using cross-cancer comparison to melanoma (n=504). Tumor-infiltrating lymphocytes (TILs) and pan-macrophage spatial marker expression were evaluated. RESULTS: We identified three robust transcriptome-based immunotypes in both Indian and Western TNBCs in similar proportions. Immunotype-1 tumors, mainly representing well-known claudin-low and immunomodulatory subgroups, harbored dense TIL infiltrates and T-helper-1 (Th1) response profiles associated with smaller tumors, pre-menopausal status, and a better prognosis. They displayed a cascade of events, including acute inflammation, damage-associated molecular patterns, T-cell receptor-related and chemokine-specific signaling, antigen presentation, and viral-mimicry pathways. On the other hand, immunotype-2 was enriched for Th2/Th17 responses, CD4+ regulatory cells, basal-like/mesenchymal immunotypes, and an intermediate prognosis. In contrast to the two T-cell enriched immunotypes, immunotype-3 patients expressed innate immune genes/proteins, including those representing myeloid infiltrations (validated by spatial immunohistochemistry), and had poor survival. Remarkably, a cross-cancer comparison analysis revealed the association of immunotype-1 with responses to anti-PD-L1 and MAGEA3 immunotherapies. CONCLUSION: Overall, the TNBC immunotypes identified in TNBCs reveal different prognoses, immune infiltrations, signaling, acute/chronic inflammation leading to immunogenic cell death of cancer cells, and potentially distinct responses to immunotherapies. The overlap in immune characteristics in Indian and Western TNBCs suggests similar efficiency of immunotherapy in both populations if strategies to select patients according to immunotypes can be further optimized and implemented

    Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans.

    No full text
    An array of homogeneous glycans representing all the major carbohydrate structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been probed with a panel of glycan-binding receptors expressed on cells of the mammalian innate immune system. The results provide an overview of interactions between mycobacterial glycans and receptors that mediate uptake and survival in macrophages, dendritic cells, and sinusoidal endothelial cells. A subset of the wide variety of glycan structures present on mycobacterial surfaces interact with cells of the innate immune system through the receptors tested. Endocytic receptors, including the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact predominantly with mannose-containing caps found on the mycobacterial polysaccharide lipoarabinomannan. Some of these receptors also interact with phosphatidyl-myo-inositol mannosides and mannose-containing phenolic glycolipids. Many glycans are ligands for overlapping sets of receptors, suggesting multiple, redundant routes by which mycobacteria can enter cells. Receptors with signaling capability interact with two distinct sets of mycobacterial glycans: targets for dectin-2 overlap with ligands for the mannose-binding endocytic receptors, while mincle binds exclusively to trehalose-containing structures such as trehalose dimycolate. None of the receptors surveyed bind furanose residues, which often form part of the epitopes recognized by antibodies to mycobacteria. Thus, the innate and adaptive immune systems can target different sets of mycobacterial glycans. This array, the first of its kind, represents an important new tool for probing, at a molecular level, biological roles of a broad range of mycobacterial glycans, a task that has not previously been possible

    A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts

    Get PDF
    Research ArticleThere are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressedinfo:eu-repo/semantics/publishedVersio

    An examination of the factorial and convergent validity of four measures of conspiracist ideation, with recommendations for researchers

    Get PDF
    A number scales have been developed to measure conspiracist ideation, but little attention has been paid to the factorial validity of these scales. We reassessed the psychometric properties of four widely-used scales, namely the Belief in Conspiracy Theories Inventory (BCTI), the Conspiracy Mentality Questionnaire (CMQ), the Generic Conspiracist Beliefs Scale (GCBS), and the One-Item Conspiracy Measure (OICM). Eight-hundred-and-three U. S. adults completed all measures, along with measures of endorsement of 9/11 and anti- vaccination conspiracy theories. Through both exploratory and confirmatory factor analysis, we found that only the BCTI had acceptable factorial validity. We failed to confirm the factor structures of the CMQ and the GBCS, suggesting these measures had poor factorial valid- ity. Indices of convergent validity were acceptable for the BCTI, but weaker for the other measures. Based on these findings, we provide suggestions for the future refinement in the measurement of conspiracist ideation

    New Insights into the Organization, Recombination, Expression and Functional Mechanism of Low Molecular Weight Glutenin Subunit Genes in Bread Wheat

    Get PDF
    The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding

    Analysis of SEC9 Suppression Reveals a Relationship of SNARE Function to Cell Physiology

    Get PDF
    BACKGROUND:Growth and division of Saccharomyces cerevisiae is dependent on the action of SNARE proteins that are required for membrane fusion. SNAREs are regulated, through a poorly understood mechanism, to ensure membrane fusion at the correct time and place within a cell. Although fusion of secretory vesicles with the plasma membrane is important for yeast cell growth, the relationship between exocytic SNAREs and cell physiology has not been established. METHODOLOGY/PRINCIPAL FINDINGS:Using genetic analysis, we identified several influences on the function of exocytic SNAREs. Genetic disruption of the V-ATPase, but not vacuolar proteolysis, can suppress two different temperature-sensitive mutations in SEC9. Suppression is unlikely due to increased SNARE complex formation because increasing SNARE complex formation, through overexpression of SRO7, does not result in suppression. We also observed suppression of sec9 mutations by growth on alkaline media or on a non-fermentable carbon source, conditions associated with a reduced growth rate of wild-type cells and decreased SNARE complex formation. CONCLUSIONS/SIGNIFICANCE:Three main conclusions arise from our results. First, there is a genetic interaction between SEC9 and the V-ATPase, although it is unlikely that this interaction has functional significance with respect to membrane fusion or SNAREs. Second, Sro7p acts to promote SNARE complex formation. Finally, Sec9p function and SNARE complex formation are tightly coupled to the physiological state of the cell

    Identifying Molecular Effects of Diet through Systems Biology: Influence of Herring Diet on Sterol Metabolism and Protein Turnover in Mice

    Get PDF
    BACKGROUND: Changes in lifestyle have resulted in an epidemic development of obesity-related diseases that challenge the healthcare systems worldwide. To develop strategies to tackle this problem the focus is on diet to prevent the development of obesity-associated diseases such as cardiovascular disease (CVD). This will require methods for linking nutrient intake with specific metabolic processes in different tissues. METHODOLOGY/PRINCIPAL FINDING: Low-density lipoprotein receptor-deficient (Ldlr -/-) mice were fed a high fat/high sugar diet to mimic a westernized diet, being a major reason for development of obesity and atherosclerosis. The diets were supplemented with either beef or herring, and matched in macronutrient contents. Body composition, plasma lipids and aortic lesion areas were measured. Transcriptomes of metabolically important tissues, e.g. liver, muscle and adipose tissue were analyzed by an integrated approach with metabolic networks to directly map the metabolic effects of diet in these different tissues. Our analysis revealed a reduction in sterol metabolism and protein turnover at the transcriptional level in herring-fed mice. CONCLUSION: This study shows that an integrated analysis of transcriptome data using metabolic networks resulted in the identification of signature pathways. This could not have been achieved using standard clustering methods. In particular, this systems biology analysis could enrich the information content of biomedical or nutritional data where subtle changes in several tissues together affects body metabolism or disease progression. This could be applied to improve diets for subjects exposed to health risks associated with obesity
    • …
    corecore